Immunoglobulins can serve as tolerogenic carriers for antigens, and B cells can function as tolerogenic antigen-presenting cells. We used this principle to design a strategy for gene therapy of experimental autoimmune uveitis, a cell-mediated autoimmune disease model for human uveitis induced with the uveitogenic interphotoreceptor retinoid-binding protein (IRBP). A retroviral vector was constructed containing a major uveitogenic IRBP epitope in frame with mouse IgG1 heavy chain. This construct was used to transduce peripheral B cells, which were infused into syngeneic recipients. A single infusion of transduced cells, 10 days before uveitogenic challenge, protected mice from clinical disease induced with the epitope or with the native IRBP protein. Protected mice had reduced antigen-specific responses, but showed no evidence for a classic Th1/Th2 response shift or for generalized anergy. Protection was not transferable, arguing against a mechanism dependent on regulatory cells. Importantly, the treatment was protective when initiated 7 days after uveitogenic immunization or concurrently with adoptive transfer of primed uveitogenic T cells. We suggest that this form of gene therapy can induce epitope-specific protection not only in naive, but also in already primed recipients, thus providing a protocol for treatment of established autoimmunity.
Rajeev K. Agarwal, Yubin Kang, Elias Zambidis, David W. Scott, Chi-Chao Chan, Rachel R. Caspi
The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.