Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Inhibiting mitochondrial respiration prevents cancer in a mouse model of Li-Fraumeni syndrome
Ping-yuan Wang, … , Antonio Tito Fojo, Paul M. Hwang
Ping-yuan Wang, … , Antonio Tito Fojo, Paul M. Hwang
Published November 21, 2016
Citation Information: J Clin Invest. 2017;127(1):132-136. https://doi.org/10.1172/JCI88668.
View: Text | PDF
Brief Report Oncology

Inhibiting mitochondrial respiration prevents cancer in a mouse model of Li-Fraumeni syndrome

  • Text
  • PDF
Abstract

Li-Fraumeni syndrome (LFS) is a cancer predisposition disorder caused by germline mutations in TP53 that can lead to increased mitochondrial metabolism in patients. However, the implications of altered mitochondrial function for tumorigenesis in LFS are unclear. Here, we have reported that genetic or pharmacologic disruption of mitochondrial respiration improves cancer-free survival in a mouse model of LFS that expresses mutant p53. Mechanistically, inhibition of mitochondrial function increased autophagy and decreased the aberrant proliferation signaling caused by mutant p53. In a pilot study, LFS patients treated with metformin exhibited decreases in mitochondrial activity concomitant with activation of antiproliferation signaling, thus reproducing the effects of disrupting mitochondrial function observed in LFS mice. These observations indicate that a commonly prescribed diabetic medicine can restrain mitochondrial metabolism and tumorigenesis in an LFS model, supporting its further consideration for cancer prevention in LFS patients.

Authors

Ping-yuan Wang, Jie Li, Farzana L. Walcott, Ju-Gyeong Kang, Matthew F. Starost, S. Lalith Talagala, Jie Zhuang, Ji-Hoon Park, Rebecca D. Huffstutler, Christina M. Bryla, Phuong L. Mai, Michael Pollak, Christina M. Annunziata, Sharon A. Savage, Antonio Tito Fojo, Paul M. Hwang

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts