Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Glucagon regulates gluconeogenesis through KAT2B- and WDR5-mediated epigenetic effects
Kim Ravnskjaer, … , Jerrold Olefsky, Marc Montminy
Kim Ravnskjaer, … , Jerrold Olefsky, Marc Montminy
Published September 24, 2013
Citation Information: J Clin Invest. 2013;123(10):4318-4328. https://doi.org/10.1172/JCI69035.
View: Text | PDF
Research Article Metabolism

Glucagon regulates gluconeogenesis through KAT2B- and WDR5-mediated epigenetic effects

  • Text
  • PDF
Abstract

Circulating pancreatic glucagon is increased during fasting and maintains glucose balance by stimulating hepatic gluconeogenesis. Glucagon triggering of the cAMP pathway upregulates the gluconeogenic program through the phosphorylation of cAMP response element–binding protein (CREB) and the dephosphorylation of the CREB coactivator CRTC2. Hormonal and nutrient signals are also thought to modulate gluconeogenic gene expression by promoting epigenetic changes that facilitate assembly of the transcriptional machinery. However, the nature of these modifications is unclear. Using mouse models and in vitro assays, we show that histone H3 acetylation at Lys 9 (H3K9Ac) was elevated over gluconeogenic genes and contributed to increased hepatic glucose production during fasting and in diabetes. Dephosphorylation of CRTC2 promoted increased H3K9Ac through recruitment of the lysine acetyltransferase 2B (KAT2B) and WD repeat–containing protein 5 (WDR5), a core subunit of histone methyltransferase (HMT) complexes. KAT2B and WDR5 stimulated the gluconeogenic program through a self-reinforcing cycle, whereby increases in H3K9Ac further potentiated CRTC2 occupancy at CREB binding sites. Depletion of KAT2B or WDR5 decreased gluconeogenic gene expression, consequently breaking the cycle. Administration of a small-molecule KAT2B antagonist lowered circulating blood glucose concentrations in insulin resistance, suggesting that this enzyme may be a useful target for diabetes treatment.

Authors

Kim Ravnskjaer, Meghan F. Hogan, Denise Lackey, Laszlo Tora, Sharon Y.R. Dent, Jerrold Olefsky, Marc Montminy

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts