The acute phase response is an evolutionarily conserved reaction in which physiological stress triggers the liver to remodel the blood proteome. Although thought to be involved in immune defense, the net biological effect of the acute phase response remains unknown. As the acute phase response is stimulated by diverse cytokines that activate either NF-κB or STAT3, we hypothesized that it could be eliminated by hepatocyte-specific interruption of both transcription factors. Here, we report that the elimination in mice of both NF-κB p65 (RelA) and STAT3, but neither alone, abrogated all acute phase responses measured. The failure to respond was consistent across multiple different infectious, inflammatory, and noxious stimuli, including pneumococcal pneumonia. When the effects of infection were analyzed in detail, pneumococcal pneumonia was found to alter the expression of over a thousand transcripts in the liver. This outcome was inhibited by the combined loss of RelA and STAT3. Moreover, this interruption of the acute phase response increased mortality and exacerbated bacterial dissemination during pneumonia, possibly as a result of acute humoral enhancement of macrophage opsonophagocytosis, which was impaired in the mutant mice. Thus, we conclude that RelA and STAT3 are essential for stress-induced transcriptional remodeling in the liver and the subsequent activation of the acute phase response, whose functional role includes compartmentalization of local infection.
Lee J. Quinton, Matthew T. Blahna, Matthew R. Jones, Eri Allen, Joseph D. Ferrari, Kristie L. Hilliard, Xiaoling Zhang, Vishakha Sabharwal, Hana Algül, Shizuo Akira, Roland M. Schmid, Stephen I. Pelton, Avrum Spira, Joseph P. Mizgerd
The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.