Parathyroid hormone (PTH) stimulates bone resorption by acting directly on osteoblasts/stromal cells and then indirectly to increase differentiation and function of osteoclasts. PTH acting on osteoblasts/stromal cells increases collagenase gene transcription and synthesis. To assess the role of collagenase in the bone resorptive actions of PTH, we used mice homozygous (r/r) for a targeted mutation (r) in Col1a1 that are resistant to collagenase cleavage of type I collagen. Human PTH(1–34) was injected subcutaneously over the hemicalvariae in wild-type (+/+) or r/r mice four times daily for three days. Osteoclast numbers, the size of the bone marrow spaces and periosteal proliferation were increased in calvariae from PTH-treated +/+ mice, whereas in r/r mice, PTH-induced bone resorption responses were minimal. The r/r mice were not resistant to other skeletal effects of PTH because abundant interstitial collagenase mRNA was detected in the calvarial periosteum of PTH-treated, but not vehicle-treated, r/r and +/+ mice. Calcemic responses, 0.5–10 hours after intraperitoneal injection of PTH, were blunted in r/r mice versus +/+ mice. Thus, collagenase cleavage of type I collagen is necessary for PTH induction of osteoclastic bone resorption.
Weiguang Zhao, Michael H. Byrne, Brendan F. Boyce, Stephen M. Krane
The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.