Gaucher disease is an autosomal recessive inborn error of glycosphingolipid metabolism caused by the deficient activity of the lysosomal hydrolase, acid β-glucosidase. Three phenotypically distinct subtypes result from different acid β-glucosidase mutations encoding enzymes with absent or low activity. A severe neonatal type 2 variant who presented with collodion skin, ichthyosis, and a rapid neurodegenerative course had two novel acid β-glucosidase alleles: a complex, maternally derived allele, E326K+L444P, and a paternally inherited nonsense mutation, E233X. Because the only other non–pseudogene-derived complex allele, D140H+E326K, also had the E326K lesion and was reported in a mild type 1 patient with a D140H+E326K/K157Q genotype, these complex alleles and their individual mutations were expressed and characterized. Because the E233X mutation expressed no activity and the K157Q allele had ∼1% normal specific activity based on cross-reacting immunologic material (CRIM SA) in the baculovirus system, the residual activity in both patients was primarily from their complex alleles. In the type 1 patient, the D140H+E326K allele was neuroprotective, encoding an enzyme with a catalytic efficiency similar to that of the N370S enzyme. In contrast, the E326K+L444P allele did not have sufficient activity to protect against the neurologic manifestations and, in combination with the inactive E233X lesion, resulted in the severe neonatal type 2 variant. Thus, characterization of these novel genotypes with non–pseudogene-derived complex mutations provided the pathogenic basis for their diverse phenotypes.
Marie E. Grace, Patricia Ashton-Prolla, Gregory M. Pastores, Agnes Soni, Robert J. Desnick
The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.