Winged helix transcription factors play important roles in cellular differentiation and cell-specific gene expression. To define the role of the winged helix factor hepatocyte nuclear factor/forkhead homologue (HFH)-4, a targeted mutation was created in the mouse hfh-4 gene. No expression of HFH-4 was detected in hfh-4(-)/- mice by RNA blot analysis, in situ hybridization, or RT-PCR. hfh-4(-)/- mice were noted to have abnormalities of organ situs consistent with random determination of left-right asymmetry. In addition, a complete absence of cilia was noted in hfh-4(-)/- mice. The hfh-4 gene is thus essential for nonrandom determination of left-right asymmetry and development of ciliated cells. Homozygous mutant mice also exhibited prenatal and postnatal growth failure, perinatal lethality and, in some cases, hydrocephalus. RT-PCR revealed an absence of left-right dynein (lrd) expression in the embryonic lungs of hfh-4(-)/- mice, suggesting that HFH-4 may act by regulating expression of members of the dynein family of genes. The abnormalities in ciliary development and organ situs in hfh-4(-)/- mice are similar to those observed in human congenital syndromes such as Kartagener syndrome. Targeted mutation of hfh-4 thus provides a model for elucidating the mechanisms regulating ciliary development and determination of left-right asymmetry.
J Chen, H J Knowles, J L Hebert, B P Hackett
The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.