Autoimmune diseases develop in approximately 5% of humans. They can arise when self-tolerance checkpoints of the immune system are bypassed as a consequence of inherited mutations of key genes involved in lymphocyte activation, survival, or death. For example, autoimmune lymphoproliferative syndrome (ALPS) results from defects in self-tolerance checkpoints as a consequence of mutations in the death receptor–encoding gene TNF receptor superfamily, member 6 (TNFRSF6; also known as FAS). However, some mutation carriers remain asymptomatic throughout life. We have now demonstrated in 7 ALPS patients that the disease develops as a consequence of an inherited TNFRSF6 heterozygous mutation combined with a somatic genetic event in the second TNFRSF6 allele. Analysis of the patients’ CD4–CD8– (double negative) T cells — accumulation of which is a hallmark of ALPS — revealed that in these cells, 3 patients had somatic mutations in their second TNFRSF6 allele, while 4 patients had loss of heterozygosity by telomeric uniparental disomy of chromosome 10. This observation provides the molecular bases of a nonmalignant autoimmune disease development in humans and may shed light on the mechanism underlying the occurrence of other autoimmune diseases.
Aude Magerus-Chatinet, Bénédicte Neven, Marie-Claude Stolzenberg, Cécile Daussy, Peter D. Arkwright, Nina Lanzarotti, Catherine Schaffner, Sophie Cluet-Dennetiere, Filomeen Haerynck, Gérard Michel, Christine Bole-Feysot, Mohammed Zarhrate, Isabelle Radford-Weiss, Serge P. Romana, Capucine Picard, Alain Fischer, Frédéric Rieux-Laucat
The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.