CXCL13 is a key B cell chemoattractant and marker of disease activity in patients with SLE; however, the mechanism of its induction has not been identified yet. Here, we have shown that the proteoglycan biglycan triggers CXCL13 expression via TLR2/4 in macrophages and dendritic cells. In vivo, levels of biglycan were markedly elevated in the plasma and kidneys of human SLE patients and lupus-prone (MRL/lpr) mice. Overexpression of soluble biglycan in MRL/lpr mice raised plasma and renal levels of CXCL13 and caused accumulation of B cells with an enhanced B1/B cell ratio in the kidney, worsening of organ damage, and albuminuria. Importantly, biglycan also triggered CXCL13 expression and B cell infiltration in the healthy kidney. Conversely, biglycan deficiency improved systemic and renal outcome in lupus-prone mice, with lower levels of autoantibodies, less enlargement of the spleen and lymph nodes, and reduction in renal damage and albuminuria. This correlated with a marked decline in circulating and renal CXCL13 and a reduction in the number of B cells in the kidney. Collectively, our results describe what we believe to be a novel mechanism for the regulation of CXCL13 by biglycan, a host-derived ligand for TLR2/4. Blocking biglycan-TLR2/4 interactions might be a promising strategy for the management of SLE and other B cell–mediated inflammatory disease entities.
Kristin Moreth, Rebekka Brodbeck, Andrea Babelova, Norbert Gretz, Tilmann Spieker, Jinyang Zeng-Brouwers, Josef Pfeilschifter, Marian F. Young, Roland M. Schaefer, Liliana Schaefer
The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.