Despite significant advancements in our understanding of cancer development, the molecular mechanisms that underlie the formation of liver cancer remain largely unknown. C/EBPα is a transcription factor that regulates liver quiescence. Phosphorylation of C/EBPα at serine 193 (S193-ph) is upregulated in older mice and is thought to contribute to age-associated liver dysfunction. Because development of liver tumors is associated with increasing age, we investigated the role of S193-ph in the development of liver cancer using knockin mice expressing a phospho-mimetic aspartic acid residue in place of serine at position 193 (S193D) of C/EBPα. The S193D isoform of C/EBPα was able to completely inhibit liver proliferation in vivo after partial hepatectomy. However, treatment of these mice with diethylnitrosamine/phenobarbital (DEN/PB), which induces formation of liver cancer, actually resulted in earlier development of liver tumors. DEN/PB treatment was associated with specific degradation of both the S193-ph and S193D isoforms of C/EBPα through activation of the ubiquitin-proteasome system (UPS). The mechanism of UPS-mediated elimination of C/EBPα during carcinogenesis involved elevated levels of gankyrin, a protein that was found to interact with the S193-ph isoform of C/EBPα and target it for UPS-mediated degradation. This study identifies a molecular mechanism that supports the development of liver cancer in older mice and potential therapeutic targets for the prevention of liver cancer.
Guo-Li Wang, Xiurong Shi, Simon Haefliger, Jingling Jin, Angela Major, Polina Iakova, Milton Finegold, Nikolai A. Timchenko
The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.