Bone undergoes a continuous cycle of renewal, and osteoclasts — the cells responsible for bone resorption — play a pivotal role in bone homeostasis. This resorption is largely mediated by inflammatory cytokines such as TNF-α. In this issue of the JCI, Yao et al. demonstrate that the NF-κB precursor protein NF-κB2 (p100) acts as a negative regulator of osteoclastogenesis (see the related article beginning on page 3024). TNF-α induced a sustained accumulation of p100 in osteoclast precursors, and TNF-α–induced osteoclast formation was markedly increased in Nfkb2–/– mice. They also found that TNF receptor–associated factor 3 (TRAF3) is involved in the posttranslational regulation of p100 expression. These results suggest that blockade of the processing of p100 is a novel strategy to treat TNF-α–related bone diseases such as RA.
Sakae Tanaka, Hiroyasu Nakano
The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.