Previous studies have suggested that alveolar Na,K-ATPases play an important role in active Na+ transport and lung edema clearance. We reasoned that overexpression of Na,K-ATPase subunit genes could increase Na,K-ATPase function in lung epithelial cells and edema clearance in rat lungs. To test this hypothesis we produced replication deficient human type 5 adenoviruses containing cDNAs for the rat alpha1 and beta1 Na,K-ATPase subunits (adMRCMValpha1 and adMRCMVbeta1, respectively). As compared to controls, adMRCMVbeta1 increased beta1 subunit expression and Na,K-ATPase function by 2. 5-fold in alveolar type 2 epithelial cells and rat airway epithelial cell monolayers. No change in Na,K-ATPase function was noted after infection with adMRCMValpha1. Rat lungs infected with adMRCMVbeta1, but not adMRCMValpha1, had increased beta1 protein levels and lung liquid clearance 7 d after tracheal instillation. Alveolar epithelial permeability to Na+ and mannitol was mildly increased in animals infected with adMRCMVbeta1 and a similar Escherichia coli lacZ-expressing virus. Our data shows, for the first time, that transfer of the beta1 Na,K-ATPase subunit gene augments Na,K-ATPase function in epithelial cells and liquid clearance in rat lungs. Conceivably, overexpression of Na,K-ATPases could be used as a strategy to augment lung liquid clearance in patients with pulmonary edema.
P Factor, F Saldias, K Ridge, V Dumasius, J Zabner, H A Jaffe, G Blanco, M Barnard, R Mercer, R Perrin, J I Sznajder
The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.