Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Acute exercise increases triglyceride synthesis in skeletal muscle and prevents fatty acid–induced insulin resistance
Simon Schenk, Jeffrey F. Horowitz
Simon Schenk, Jeffrey F. Horowitz
Published June 1, 2007
Citation Information: J Clin Invest. 2007;117(6):1690-1698. https://doi.org/10.1172/JCI30566.
View: Text | PDF
Research Article Article has an altmetric score of 24

Acute exercise increases triglyceride synthesis in skeletal muscle and prevents fatty acid–induced insulin resistance

  • Text
  • PDF
Abstract

Fatty acid oversupply is a key mediator of skeletal muscle insulin resistance in obesity, primarily via accumulation of fatty acid metabolites and activation of proinflammatory pathways. Herein, we demonstrate that fatty acid–induced insulin resistance in humans is completely prevented the day after 1 session of endurance exercise. Because skeletal muscle is the primary site for systemic glucose disposal and is highly susceptible to impaired insulin action by elevated fatty acid availability, we obtained skeletal muscle samples to investigate possible mechanisms mediating this protective effect of exercise. Prevention of fatty acid–induced insulin resistance after exercise accompanied enhanced skeletal muscle protein expression of key lipogenic enzymes and an increase in muscle triglyceride synthesis. Partitioning more fatty acids toward triglyceride synthesis within muscle reduced the accumulation of fatty acid metabolites and suppressed the proinflammatory response in skeletal muscle, as evidenced by decreased phosphorylation and activation of JNK and increased abundance of inhibitor of NF-κB α (IκB-α) and IκB-β. We believe this is the first study to demonstrate that 1 session of exercise completely reverses fatty acid–induced insulin resistance in humans. Reversal of insulin resistance accompanied enhanced lipogenic capacity within skeletal muscle, reduced accumulation of highly bioactive fatty acid metabolites, and suppressed activation of proinflammatory pathways known to impair insulin action.

Authors

Simon Schenk, Jeffrey F. Horowitz

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required
Rich Text Editor, eletter_body
Editor toolbarsClipboard/Undo CutKeyboard shortcut Ctrl+X CopyKeyboard shortcut Ctrl+C PasteKeyboard shortcut Ctrl+V Paste as plain textKeyboard shortcut Ctrl+Alt+Shift+V Paste from Word UndoKeyboard shortcut Ctrl+Z RedoKeyboard shortcut Ctrl+YEditing Find Replace Select All Spell Check As You TypeLinks LinkKeyboard shortcut Ctrl+K Unlink AnchorForms Form Checkbox Radio Button Text Field Textarea Selection Field Button Image Button Hidden FieldTools Maximize Show BlocksDocument Source Save New Page Preview Print TemplatesBasic Styles BoldKeyboard shortcut Ctrl+B ItalicKeyboard shortcut Ctrl+I UnderlineKeyboard shortcut Ctrl+U Strikethrough Subscript Superscript Copy FormattingKeyboard shortcut Ctrl+Shift+C Remove FormatParagraph Insert/Remove Numbered List Insert/Remove Bulleted List Decrease Indent Increase Indent Block Quote Create Div Container Align Left Center Align Right Justify Text direction from left to right Text direction from right to left Set languageStylesStylesStylesFormatFormatFontFontSizeSizeColors Text Color Background Color
Press ALT 0 for help
◢Elements path 

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Picked up by 1 news outlets
Posted by 13 X users
Referenced in 1 patents
Highlighted by 1 platforms
314 readers on Mendeley
See more details