Wiskott-Aldrich syndrome protein (WASp) is essential for optimal T cell activation. Patients with WAS exhibit both immunodeficiency and a marked susceptibility to systemic autoimmunity. We investigated whether alterations in Treg function might explain these paradoxical observations. While WASp-deficient (WASp–/–) mice exhibited normal thymic Treg generation, the competitive fitness of peripheral Tregs was severely compromised. The total percentage of forkhead box P3–positive (Foxp3+) Tregs among CD4+ T cells was reduced, and WASp–/– Tregs were rapidly outcompeted by WASp+ Tregs in vivo. These findings correlated with reduced expression of markers associated with self-antigen–driven peripheral Treg activation and homing to inflamed tissue. Consistent with these findings, WASp–/– Tregs showed a reduced ability to control aberrant T cell activation and autoimmune pathology in Foxp3–/–Scurfy (sf) mice. Finally, WASp+ Tregs exhibited a marked selective advantage in vivo in a WAS patient with a spontaneous revertant mutation, indicating that altered Treg fitness likely explains the autoimmune features in human WAS.
Stephanie Humblet-Baron, Blythe Sather, Stephanie Anover, Shirly Becker-Herman, Debora J. Kasprowicz, Socheath Khim, Thuc Nguyen, Kelly Hudkins-Loya, Charles E. Alpers, Steve F. Ziegler, Hans Ochs, Troy Torgerson, Daniel J. Campbell, David J. Rawlings
The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.