Mutations in the gene encoding hepatocyte nuclear factor-4α (HNF-4α) result in maturity-onset diabetes of the young (MODY). To determine the contribution of HNF-4α to the maintenance of glucose homeostasis by the β cell in vivo, we derived a conditional knockout of HNF-4α using the Cre-loxP system. Surprisingly, deletion of HNF-4α in β cells resulted in hyperinsulinemia in fasted and fed mice but paradoxically also in impaired glucose tolerance. Islet perifusion and calcium-imaging studies showed abnormal responses of the mutant β cells to stimulation by glucose and sulfonylureas. These phenotypes can be explained in part by a 60% reduction in expression of the potassium channel subunit Kir6.2. We demonstrate using cotransfection assays that the Kir6.2 gene is a transcriptional target of HNF-4α. Our data provide genetic evidence that HNF-4α is required in the pancreatic β cell for regulation of the pathway of insulin secretion dependent on the ATP-dependent potassium channel.
Rana K. Gupta, Marko Z. Vatamaniuk, Catherine S. Lee, Reed C. Flaschen, James T. Fulmer, Franz M. Matschinsky, Stephen A. Duncan, Klaus H. Kaestner
The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.