Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

T cell–mediated vascular dysfunction of human allografts results from IFN-γ dysregulation of NO synthase
Kian Peng Koh, … , George Tellides, Jordan S. Pober
Kian Peng Koh, … , George Tellides, Jordan S. Pober
Published September 15, 2004
Citation Information: J Clin Invest. 2004;114(6):846-856. https://doi.org/10.1172/JCI21767.
View: Text | PDF
Article Cardiology Article has an altmetric score of 3

T cell–mediated vascular dysfunction of human allografts results from IFN-γ dysregulation of NO synthase

  • Text
  • PDF
Abstract

Allograft vascular dysfunction predisposes to arteriosclerosis and graft loss. We examined how dysfunction develops in transplanted human arteries in response to circulating allogeneic T cells in vivo using immunodeficient murine hosts. Within 7–9 days, transplanted arteries developed endothelial cell (EC) dysfunction but remained sensitive to exogenous NO. By 2 weeks, the grafts developed impaired contractility and desensitization to NO, both signs of VSMC dysfunction. These T cell–dependent changes correlated with loss of eNOS and expression of iNOS — the latter predominantly within infiltrating T cells. Neutralizing IFN-γ completely prevented both vascular dysfunction and changes in NOS expression; neutralizing TNF reduced IFN-γ production and partially prevented dysfunction. Inhibiting iNOS partially preserved responses to NO at 2 weeks and reduced graft intimal expansion after 4 weeks in vivo. In vitro, memory CD4+ T cells acted on allogeneic cultured ECs to reduce eNOS activity and expression of protein and mRNA. These effects required T cell activation by class II MHC antigens and costimulators (principally lymphocyte function-associated antigen–3, or LFA-3) on the ECs and were mediated by production of soluble mediators including IFN-γ and TNF. We conclude that IFN-γ is a central mediator of vascular dysfunction and, through dysregulation of NOS expression, links early dysfunction with late arteriosclerosis.

Authors

Kian Peng Koh, Yinong Wang, Tai Yi, Stephen L. Shiao, Marc I. Lorber, William C. Sessa, George Tellides, Jordan S. Pober

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required
Rich Text Editor, eletter_body
Editor toolbarsClipboard/Undo CutKeyboard shortcut Ctrl+X CopyKeyboard shortcut Ctrl+C PasteKeyboard shortcut Ctrl+V Paste as plain textKeyboard shortcut Ctrl+Alt+Shift+V Paste from Word UndoKeyboard shortcut Ctrl+Z RedoKeyboard shortcut Ctrl+YEditing Find Replace Select All Spell Check As You TypeLinks LinkKeyboard shortcut Ctrl+K Unlink AnchorForms Form Checkbox Radio Button Text Field Textarea Selection Field Button Image Button Hidden FieldTools Maximize Show BlocksDocument Source Save New Page Preview Print TemplatesBasic Styles BoldKeyboard shortcut Ctrl+B ItalicKeyboard shortcut Ctrl+I UnderlineKeyboard shortcut Ctrl+U Strikethrough Subscript Superscript Copy FormattingKeyboard shortcut Ctrl+Shift+C Remove FormatParagraph Insert/Remove Numbered List Insert/Remove Bulleted List Decrease Indent Increase Indent Block Quote Create Div Container Align Left Center Align Right Justify Text direction from left to right Text direction from right to left Set languageStylesStylesStylesFormatFormatFontFontSizeSizeColors Text Color Background Color
Press ALT 0 for help
◢Elements path 

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 1 patents
31 readers on Mendeley
See more details