Acute liver failure caused by viral hepatitis or toxic damage involves both apoptotic and necrotic pathways. IGF binding protein-1 (IGFBP-1), a hepatocyte-derived secreted protein, is required for normal liver regeneration. To determine whether IGFBP-1 could prevent liver injury that entails direct stimulation of hepatocyte apoptosis, IGFBP-1–/– mice, IGFBP-1+/+ mice, and mice pretreated with Ab’s against IGFBP-1 were treated with a normally sublethal dose of Fas agonist. IGFBP-1 deficiency was associated with massive hepatocyte apoptosis and caspase activation within 3 hours of Fas agonist treatment, which could be corrected by pretreatment with IGFBP-1. IGFBP-1–deficient livers had enhanced signaling via the integrin receptor at early times (0.5 to 1 hour) after Fas agonist treatment accompanied by elevated activated matrix metalloproteinase-9 (MMP-9), a known target of fibronectin signaling and activator of TGF-β. Within 3 hours of Fas agonist treatment, elevated expression of active TGF-β1, a hepatocyte apoptogen, was observed in IGFBP-1–deficient livers that correlated with the appearance of the apoptotic process. Both MMP-9 and TGF-β1 expression were suppressed by IGFBP-1 treatment, supporting their role in the apoptotic process. IGFBP-1–/– mice also displayed increased injury in a toxic hepatic injury model caused by CCl4. These findings indicate that IGFBP-1 functions as a critical hepatic survival factor in the liver by reducing the level of proapoptotic signals.
Julia I. Leu, Mary Ann S. Crissey, Rebecca Taub
The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.