Graft-versus-host disease (GVHD), manifesting as either acute (aGVHD) or chronic (cGVHD), presents significant life-threatening complications following allogeneic hematopoietic cell transplantation. Here, we investigated Friend virus leukemia integration 1 (Fli-1) in GVHD pathogenesis and validated Fli-1 as a therapeutic target. Using genetic approaches, we found that Fli-1 dynamically regulated different T cell subsets in allogeneic responses and pathogenicity in the development of aGVHD and cGVHD. Compared with homozygous Fli1-deficient or WT T cells, heterozygous Fli1-deficient T cells induced the mildest GVHD, as evidenced by the lowest Th1 and Th17 cell differentiation. Single-cell RNA-Seq analysis revealed that Fli-1 differentially regulated CD4+ and CD8+ T cell responses. Fli-1 promoted the transcription of Th1/Th17 pathways and T cell receptor–inducible (TCR-inducible) transcription factors in CD4+ T cells, while suppressing activation- and function-related gene pathways in CD8+ T cells. Importantly, a low dose of camptothecin, topotecan, or etoposide acted as a potent Fli-1 inhibitor and significantly attenuated GVHD severity, while preserving the graft-versus-leukemia (GVL) effect. This observation was extended to a xenograft model, in which GVHD was induced by human T cells. In conclusion, we provide evidence that Fli-1 plays a crucial role in alloreactive CD4+ T cell activation and differentiation and that targeting Fli-1 may be an attractive strategy for treating GVHD without compromising the GVL effect.
Steven D. Schutt, Yongxia Wu, Arjun Kharel, David Bastian, Hee-Jin Choi, Mohammed Hanief Sofi, Corey Mealer, Brianyell McDaniel Mims, Hung Nguyen, Chen Liu, Kris Helke, Weiguo Cui, Xian Zhang, Yaacov Ben-David, Xue-Zhong Yu
The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.