Deficiency of the Golgi enzyme UDP-Gal:N-acetylglucosamine β-1,4-galactosyltransferase I (β4GalT I) (E.C.2.4.1.38) causes a new congenital disorder of glycosylation (CDG), designated type IId (CDG-IId), a severe neurologic disease characterized by a hydrocephalus, myopathy, and blood-clotting defects. Analysis of oligosaccharides from serum transferrin by HPLC, mass spectrometry, and lectin binding revealed the loss of sialic acid and galactose residues. In skin fibroblasts and leukocytes, galactosyltransferase activity was reduced to 5% that of controls. In fibroblasts, a truncated polypeptide was detected that was about 12 kDa smaller in size than wild-type β4GalT I and that failed to localize to the Golgi apparatus. Sequencing of the β4GalT I cDNA and gene revealed an insertion of a single nucleotide (1031-1032insC) leading to premature translation stop and loss of the C-terminal 50 amino acids of the enzyme. The patient was homozygous and his parents heterozygous for this mutation. Expression of a corresponding mutant cDNA in COS-7 cells led to the synthesis of a truncated, inactive polypeptide, which localized to the endoplasmic reticulum.
Bengt Hanßke, Christian Thiel, Torben Lübke, Martin Hasilik, Stefan Höning, Verena Peters, Peter H. Heidemann, Georg F. Hoffmann, Eric G. Berger, Kurt von Figura, Christian Körner
The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.