Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Chemotherapy-induced S100A10 recruits KDM6A to facilitate OCT4-mediated breast cancer stemness
Haiquan Lu, … , Yueyang J. Wang, Gregg L. Semenza
Haiquan Lu, … , Yueyang J. Wang, Gregg L. Semenza
Published May 19, 2020
Citation Information: J Clin Invest. 2020;130(9):4607-4623. https://doi.org/10.1172/JCI138577.
View: Text | PDF
Research Article Oncology Article has an altmetric score of 4

Chemotherapy-induced S100A10 recruits KDM6A to facilitate OCT4-mediated breast cancer stemness

  • Text
  • PDF
Abstract

Breast cancer stem cells (BCSCs) play a critical role in cancer recurrence and metastasis. Chemotherapy induces BCSC specification through increased expression of pluripotency factors, but how their expression is regulated is not fully understood. Here, we delineate a pathway controlled by hypoxia-inducible factor 1 (HIF-1) that epigenetically activates pluripotency factor gene transcription in response to chemotherapy. Paclitaxel induces HIF-1–dependent expression of S100A10, which forms a complex with ANXA2 that interacts with histone chaperone SPT6 and histone demethylase KDM6A. S100A10, ANXA2, SPT6, and KDM6A are recruited to OCT4 binding sites and KDM6A erases H3K27me3 chromatin marks, facilitating transcription of genes encoding the pluripotency factors NANOG, SOX2, and KLF4, which along with OCT4 are responsible for BCSC specification. Silencing of S100A10, ANXA2, SPT6, or KDM6A expression blocks chemotherapy-induced enrichment of BCSCs, impairs tumor initiation, and increases time to tumor recurrence after chemotherapy is discontinued. Pharmacological inhibition of KDM6A also impairs chemotherapy-induced BCSC enrichment. These results suggest that targeting HIF-1/S100A10–dependent and KDM6A-mediated epigenetic activation of pluripotency factor gene expression in combination with chemotherapy may block BCSC enrichment and improve clinical outcome.

Authors

Haiquan Lu, Yangyiran Xie, Linh Tran, Jie Lan, Yongkang Yang, Naveena L. Murugan, Ru Wang, Yueyang J. Wang, Gregg L. Semenza

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required
Rich Text Editor, eletter_body
Editor toolbarsClipboard/Undo CutKeyboard shortcut Ctrl+X CopyKeyboard shortcut Ctrl+C PasteKeyboard shortcut Ctrl+V Paste as plain textKeyboard shortcut Ctrl+Alt+Shift+V Paste from Word UndoKeyboard shortcut Ctrl+Z RedoKeyboard shortcut Ctrl+YEditing Find Replace Select All Spell Check As You TypeLinks LinkKeyboard shortcut Ctrl+K Unlink AnchorForms Form Checkbox Radio Button Text Field Textarea Selection Field Button Image Button Hidden FieldTools Maximize Show BlocksDocument Source Save New Page Preview Print TemplatesBasic Styles BoldKeyboard shortcut Ctrl+B ItalicKeyboard shortcut Ctrl+I UnderlineKeyboard shortcut Ctrl+U Strikethrough Subscript Superscript Copy FormattingKeyboard shortcut Ctrl+Shift+C Remove FormatParagraph Insert/Remove Numbered List Insert/Remove Bulleted List Decrease Indent Increase Indent Block Quote Create Div Container Align Left Center Align Right Justify Text direction from left to right Text direction from right to left Set languageStylesStylesStylesFormatFormatFontFontSizeSizeColors Text Color Background Color
Press ALT 0 for help
◢Elements path 

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Posted by 7 X users
52 readers on Mendeley
See more details