Cyclooxygenase-2 (COX-2) expression is normally tightly regulated. However, constitutive overexpression plays a key role in colon carcinogenesis. To understand the molecular nature of enhanced COX-2 expression detected in colon cancer, we examined the ability of the AU-rich element–containing (ARE-containing) 3′ untranslated region (3′UTR) of COX-2 mRNA to regulate rapid mRNA decay in human colon cancer cells. In tumor cells displaying enhanced growth and tumorigenicity that is correlated with elevated COX-2, vascular endothelial growth factor (VEGF), and IL-8 protein levels, the corresponding mRNAs were transcribed constitutively and turned over slowly. The observed mRNA stabilization is owing to defective recognition of class II-type AREs present within the COX-2, VEGF, and IL-8 3′UTRs; c-myc mRNA, containing a class I ARE decayed rapidly in the same cells. Correlating with cellular defects in mRNA stability, the RNA-binding of trans-acting cellular factors was altered. In particular, we found that the RNA-stability factor HuR binds to the COX-2 ARE, and overexpression of HuR, as detected in tumors, results in elevated expression of COX-2, VEGF, and IL-8. These findings demonstrate the functional significance rapid mRNA decay plays in controlling gene expression and show that dysregulation of these trans-acting factors can lead to overexpression of COX-2 and other angiogenic proteins, as detected in neoplasia.
Dan A. Dixon, Neal D. Tolley, Peter H. King, L. Burt Nabors, Thomas M. McIntyre, Guy A. Zimmerman, Stephen M. Prescott
The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.