This study was designed to determine the potential of IGF-1 as a neuronal rescue agent after cerebral ischemia. Unanesthetized late gestation fetal sheep were subjected to 30-min cerebral ischemia by inflation of carotid artery occluder cuffs. 2 h later either 0.1 microgram rhIGF-1, 1 microgram rhIGF-1, 10 micrograms rhIGF-1, or vehicle was infused into a lateral cerebral ventricle over 1 h. Histologic outcome was assessed 5 d later. Overall neuronal loss was reduced with 0.1 microgram (P < 0.05) and 1 microgram (P < 0.002) rhIGF-1, but treatment with 10 micrograms was not effective. With 1 microgram rhIGF-1 neuronal loss scores were significantly lower in brain regions examined including cortex, hippocampus, and striatum, whereas with 0.1 microgram rhIGF-1 the parietal cortex and thalamus were not improved and the improvement seen in other regions was less than with 1 microgram rhIGF-1. Treatment with 1 microgram rhIGF-1 also delayed the onset of seizures and reduced their incidence. Moreover, the secondary phase of cytotoxic edema was reduced and delayed in onset. We conclude that low dose rhIGF-1 therapy promotes neuronal rescue after cerebral hypoxic-ischemic injury in utero, but the effect is dose dependent. Importantly, rhIGF-1 is effective and nontoxic when administered 2 h after the hypoxic ischemic insult. This distinguishes IGF-1 from most other neuroprotective therapies and suggests clinical application may be possible.
B M Johnston, E C Mallard, C E Williams, P D Gluckman
The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.