The reverse cholesterol transport is initiated by the uptake of cholesterol into minor subfractions of high density lipoproteins (HDL) which contain either apolipoprotein (apo) A-I or apoE as their only apolipoproteins. From these initial acceptors, which are termed prebeta1-LpA-I and gamma-LpE, respectively, cell-derived cholesterol is transferred to LDL via the bulk of HDL termed alpha-LpA-I. In this study we analyzed the effect in plasma of the genetically determined apoE polymorphism on the formation of gamma-LpE, uptake and transfer of cell-derived cholesterol to LDL. Gamma-LpE was immunologically detectable in plasmas of individuals carrying at least one apoE3-allele but not in apoE3-free plasmas. During one minute incubation with [3H]cholesterol-labeled fibroblasts, gamma-LpE of plasmas from apoE3/3 subjects accumulated 7 and 13-fold more radioactivity than the respective fractions in plasmas from apoE2/2- and apoE4/4-subjects, respectively. Totally, 30% less [3H]cholesterol was released into plasmas of apoE2/2 and apoE4/4-individuals as compared with plasmas of apoE3/3-subjects. Moreover, plasmas of apoE3/3 individuals accumulated 50% and 65% more cell-derived [3H]cholesterol in alpha-LpA-I2 than plasmas of apoE4/4 and apoE2/2-subjects, respectively. These results indicate that the apoE-polymorphism is an important determinant of the uptake and transfer of cell-derived cholesterol in plasma.
Y Huang, A von Eckardstein, S Wu, G Assmann
The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.