Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Mechanical strain of rat vascular smooth muscle cells is sensed by specific extracellular matrix/integrin interactions.
E Wilson, … , K Sudhir, H E Ives
E Wilson, … , K Sudhir, H E Ives
Published November 1, 1995
Citation Information: J Clin Invest. 1995;96(5):2364-2372. https://doi.org/10.1172/JCI118293.
View: Text | PDF
Research Article

Mechanical strain of rat vascular smooth muscle cells is sensed by specific extracellular matrix/integrin interactions.

  • Text
  • PDF
Abstract

Cyclic mechanical strain (1 Hz) causes a mitogenic response in neonatal rat vascular smooth muscle cells due to production and secretion of PDGF. In this study, the mechanism for sensing mechanical strain was investigated. Silicone elastomer strain plates were coated at varying densities with elastin, laminin, type I collagen, fibronectin, or vitronectin. Strain was applied by cyclic application of a vacuum under the dishes. Cells adhered, spread, and proliferated on each matrix protein, but the mitogenic response to strain was matrix dependent. Strain increased DNA synthesis in cells on collagen, fibronectin, or vitronectin, but not in cells on elastin or laminin. When strain was applied on matrices containing both laminin and vitronectin, the mitogenic response to strain depended upon the vitronectin content of the matrix. Fibronectin, in soluble form (0-50 micrograms/ml), and the integrin binding peptide GRGDTP (100 micrograms/ml) both blocked the mitogenic response to mechanical strain in cells grown on immobilized collagen. Neither soluble laminin nor the inactive peptide GRGESP blocked the response to strain. GRGDTP did not alter the mitogenic response to exogenous PDGF or alpha-thrombin but did prevent the secretion of PDGF in response to strain. Furthermore, GRGDTP, but not GRGESP, prevented strain-induced expression of a PDGF-A chain promoter 890 bp-chloramphenicol acetyltransferase construct that was transiently transfected into vascular smooth muscle cells. Finally, the response to strain was abrogated by antibodies to both beta 3 and alpha v beta 5 integrins but not by an antibody to beta 1 integrins. Thus interaction between integrins and specific matrix proteins is responsible for sensing mechanical strain in vascular smooth muscle cells.

Authors

E Wilson, K Sudhir, H E Ives

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required
Rich Text Editor, eletter_body
Editor toolbarsClipboard/Undo CutKeyboard shortcut Ctrl+X CopyKeyboard shortcut Ctrl+C PasteKeyboard shortcut Ctrl+V Paste as plain textKeyboard shortcut Ctrl+Alt+Shift+V Paste from Word UndoKeyboard shortcut Ctrl+Z RedoKeyboard shortcut Ctrl+YEditing Find Replace Select All Spell Check As You TypeLinks LinkKeyboard shortcut Ctrl+K Unlink AnchorForms Form Checkbox Radio Button Text Field Textarea Selection Field Button Image Button Hidden FieldTools Maximize Show BlocksDocument Source Save New Page Preview Print TemplatesBasic Styles BoldKeyboard shortcut Ctrl+B ItalicKeyboard shortcut Ctrl+I UnderlineKeyboard shortcut Ctrl+U Strikethrough Subscript Superscript Copy FormattingKeyboard shortcut Ctrl+Shift+C Remove FormatParagraph Insert/Remove Numbered List Insert/Remove Bulleted List Decrease Indent Increase Indent Block Quote Create Div Container Align Left Center Align Right Justify Text direction from left to right Text direction from right to left Set languageStylesStylesStylesFormatFormatFontFontSizeSizeColors Text Color Background Color
Press ALT 0 for help
◢Elements path 

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts