Differentiated villus intestinal epithelial cells express globotriaosylceramide, the Shiga-like toxin 1 (SLT-1) receptor, and are sensitive to toxin-mediated cytotoxicity, whereas undifferentiated crypt cells neither express Gb3 nor respond to toxin. To investigate if SLT-1 receptors are maturationally regulated in human intestinal cells, we examined the effect of butyrate, a known transcriptional regulator of differentiation genes in many cell types, using cultured colonic cancer-derived epithelial cell lines. Exposure to butyrate increased villus cell marker enzymes such as alkaline phosphatase, sucrase, and lactase, expression of toxin receptors, and sensitivity to SLT-1 in villus-like CaCo-2A and HT-29 cells. These effects were reversibly inhibited by preincubation of CaCo-2A cells with actinomycin D or cycloheximide. Butyrate-treated CaCo-2A cells unable to bind fluoresceinated SLT-1 B subunit were undifferentiated as assessed by alkaline phosphatase activity. HT-29 cells induced to differentiate by another signal, glucose deprivation, upregulated receptor content and response to toxin. Crypt-like T-84 cells responded to butyrate with a modest increase in alkaline phosphatase and toxin binding, but no induction of sucrase or lactase, and no change in sensitivity to toxin. The results demonstrate that expression of SLT-1 toxin receptors and toxin sensitivity are coregulated with cellular differentiation in cultured intestinal cells.
M S Jacewicz, D W Acheson, M Mobassaleh, A Donohue-Rolfe, K A Balasubramanian, G T Keusch
The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.