Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Excessive insulin receptor serine phosphorylation in cultured fibroblasts and in skeletal muscle. A potential mechanism for insulin resistance in the polycystic ovary syndrome.
A Dunaif, … , E Schenker, Z Tang
A Dunaif, … , E Schenker, Z Tang
Published August 1, 1995
Citation Information: J Clin Invest. 1995;96(2):801-810. https://doi.org/10.1172/JCI118126.
View: Text | PDF
Research Article

Excessive insulin receptor serine phosphorylation in cultured fibroblasts and in skeletal muscle. A potential mechanism for insulin resistance in the polycystic ovary syndrome.

  • Text
  • PDF
Abstract

We investigated the cellular mechanisms of the unique disorder of insulin action found in the polycystic ovary syndrome (PCOS). Approximately 50% of PCOS women (PCOS-Ser) had a significant increase in insulin-independent beta-subunit [32P]phosphate incorporation (3.7-fold, P < 0.05 vs other groups) in skin fibroblast insulin receptors that was present in serine residues while insulin-induced tyrosine phosphorylation was decreased (both P < 0.05 vs other groups). PCOS skeletal muscle insulin receptors had the same abnormal phosphorylation pattern. The remaining PCOS women (PCOS-n1) had basal and insulin-stimulated receptor autophosphorylation similar to control. Phosphorylation of the artificial substrate poly GLU4:TYR1 by the PCOS-Ser insulin receptors was significantly decreased (P < 0.05) compared to control and PCOS-n1 receptors. The factor responsible for excessive serine phosphorylation appeared to be extrinsic to the receptor since no insulin receptor gene mutations were identified, immunoprecipitation before autophosphorylation corrected the phosphorylation defect and control insulin receptors mixed with lectin eluates from affected PCOS fibroblasts displayed increased serine phosphorylation. Our findings suggest that increased insulin receptor serine phosphorylation decreases its protein tyrosine kinase activity and is one mechanism for the post-binding defect in insulin action characteristic of PCOS.

Authors

A Dunaif, J Xia, C B Book, E Schenker, Z Tang

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts