Hormonal activation of protein kinase C (PKC) is a major signaling mechanism regulating salt and water transport in the distal nephron. We used antisense DNA to down-regulate a PKC isoform in the rabbit cortical collecting duct (CCD) and examined its role in mediating arginine vasopressin's (AVP) effect on salt transport in the CCD. Immunoblots demonstrate that PKC-epsilon (diacylglycerol sensitive) and PKC-zeta (diacylglycerol insensitive) are the major PKC isoforms in both freshly isolated and primary cultures of rabbit CCDs. Rabbit CCDs grown on semi-permeable supports, displayed a positive baseline short circuit current (Isc), which was abolished by amiloride, demonstrating active Na+ absorption. Both AVP and 8-chloro-phenylthio-cAMP (8CPTcAMP) transiently increased Isc, however, within 40 min Isc fell below baseline. Down-regulation of PKC-epsilon, as confirmed by immunoblot, was achieved either by treatment with a PKC-epsilon-specific antisense oligonucleotide or 48 h of 1 microM PMA. In PKC-epsilon down-regulated cells, 8CPTcAMP produced a sustained, rather than transient, increase in Isc. We suggest cAMP stimulates Na+ transport, but secondary activation of PKC-epsilon results in the sustained inhibition of Na+ transport seen in response to vasopressin in the CCD.
D L DeCoy, J R Snapper, M D Breyer
The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.