Plasminogen activator inhibitor-1 (PAI-1), the primary inhibitor of tissue-type plasminogen activator (t-PA) and urokinase plasminogen activator, is an important regulator of the blood fibrinolytic system. Elevated plasma levels of PAI-1 are associated with thrombosis, and high levels of PAI-1 within platelet-rich clots contribute to their resistance to lysis by t-PA. Consequently, strategies aimed at inhibition of PAI-1 may prove clinically useful. This study was designed to test the hypothesis that a 14-amino acid peptide, corresponding to the PAI-1 reactive center loop (residues 333-346), can rapidly inhibit PAI-1 function. PAI-1 (0.7 microM) was incubated with peptide (55 microM) at 37 degrees C. At timed intervals, residual PAI-1 activity was determined by addition of reaction mixture samples to t-PA and chromogenic substrate. The T1/2 of PAI-1 activity in the presence of peptide was 4 +/- 3 min compared to a control T1/2 of 98 +/- 18 min. The peptide also inhibited complex formation between PAI-1 and t-PA as demonstrated by SDS-PAGE analysis. However, the capacity of the peptide to inhibit PAI-1 bound to vitronectin, a plasma protein that stabilizes PAI-1 activity, was markedly attenuated. Finally, the peptide significantly enhanced in vitro lysis of platelet-rich clots and platelet-poor clots containing recombinant PAI-1. These results indicate that a 14-amino acid peptide can rapidly inactivate PAI-1 and accelerate fibrinolysis in vitro. These studies also demonstrate that PAI-1 function can be directly attenuated in a physiologic setting and suggest a novel approach for augmenting fibrinolysis in vivo.
D T Eitzman, W P Fay, D A Lawrence, A M Francis-Chmura, J D Shore, S T Olson, D Ginsburg
The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.