Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Hemodynamic and neurohumoral effects of various grades of selective adenosine transport inhibition in humans. Implications for its future role in cardioprotection.
G A Rongen, … , H Van Belle, T Thien
G A Rongen, … , H Van Belle, T Thien
Published February 1, 1995
Citation Information: J Clin Invest. 1995;95(2):658-668. https://doi.org/10.1172/JCI117711.
View: Text | PDF
Research Article

Hemodynamic and neurohumoral effects of various grades of selective adenosine transport inhibition in humans. Implications for its future role in cardioprotection.

  • Text
  • PDF
Abstract

In 12 healthy male volunteers (27-53 yr), a placebo-controlled randomized double blind cross-over trial was performed to study the effect of the intravenous injection of 0.25, 0.5, 1, 2, 4, and 6 mg draflazine (a selective nucleoside transport inhibitor) on hemodynamic and neurohumoral parameters and ex vivo nucleoside transport inhibition. We hypothesized that an intravenous draflazine dosage without effect on hemodynamic and neurohumoral parameters would still be able to augment the forearm vasodilator response to intraarterially infused adenosine. Heart rate (electrocardiography), systolic blood pressure (Dinamap 1846 SX; Critikon, Portanje Electronica BV, Utrecht, The Netherlands) plasma norepinephrine and epinephrine increased dose-dependently and could almost totally be abolished by caffeine pretreatment indicating the involvement of adenosine receptors. Draflazine did not affect forearm blood flow (venous occlusion plethysmography). Intravenous injection of 0.5 mg draflazine did not affect any of the measured hemodynamic parameters but still induced a significant ex vivo nucleoside-transport inhibition of 31.5 +/- 4.1% (P < 0.05 vs placebo). In a subgroup of 10 subjects the brachial artery was cannulated to infuse adenosine (0.15, 0.5, 1.5, 5, 15, and 50 micrograms/100 ml forearm per min) before and after intravenous injection of 0.5 mg draflazine. Forearm blood flow amounted 1.9 +/- 0.3 ml/100 ml forearm per min for placebo and 1.8 +/- 0.2, 2.0 +/- 0.3, 3.8 +/- 0.9, 6.3 +/- 1.2, 11.3 +/- 2.2, and 19.3 +/- 3.9 ml/100 ml forearm per min for the six incremental adenosine dosages, respectively. After the intravenous draflazine infusion, these values were 1.6 +/- 0.2 ml/100 ml forearm per min for placebo and 2.1 +/- 0.3, 3.3 +/- 0.6, 5.8 +/- 1.1, 6.9 +/- 1.4, 14.4 +/- 2.9, and 23.5 +/- 4.0 ml/100 ml forearm per min, respectively (Friedman ANOVA: P < 0.05 before vs after draflazine infusion). In conclusion, a 30-50% inhibition of adenosine transport significantly augments the forearm vasodilator response to adenosine without significant systemic effects. These results suggest that draflazine is a feasible tool to potentiate adenosine-mediated cardioprotection in man.

Authors

G A Rongen, P Smits, K Ver Donck, J J Willemsen, R A De Abreu, H Van Belle, T Thien

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts