Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Mechanism of compensatory hyperinsulinemia in normoglycemic insulin-resistant spontaneously hypertensive rats. Augmented enzymatic activity of glucokinase in beta-cells.
C Chen, … , L M Bumbalo, J L Leahy
C Chen, … , L M Bumbalo, J L Leahy
Published July 1, 1994
Citation Information: J Clin Invest. 1994;94(1):399-404. https://doi.org/10.1172/JCI117335.
View: Text | PDF
Research Article

Mechanism of compensatory hyperinsulinemia in normoglycemic insulin-resistant spontaneously hypertensive rats. Augmented enzymatic activity of glucokinase in beta-cells.

  • Text
  • PDF
Abstract

The cause of compensatory hyperinsulinemia in normoglycemic insulin-resistant states is unknown. Using spontaneously hypertensive rats (SHR), we tested the hypothesis that a lowered beta-cell set-point for glucose causes a hypersecretion of insulin at a normal glucose level. Islets isolated from normoglycemic hyperinsulinemic SHR were compared to age-matched (12 wk old) Wistar-Kyoto (WK) rats. The ED50 for glucose-induced insulin secretion was 6.6 +/- 1.0 mM glucose in SHR versus 9.6 +/- 0.5 mM glucose in WK (P < 0.02). Glucokinase enzymatic activity was increased 40% in SHR islets (P < 0.02) without any change in the glucokinase protein level by Western blot. The level of the beta-cell glucose transporter (GLUT-2) was increased 75% in SHR islets (P < 0.036). In summary, the beta-cell sensitivity for glucose was increased in these normoglycemic insulin resistant rats by an enhanced catalytic activity of glucokinase. We have identified a regulatory system for glucokinase in the beta-cell which entails variable catalytic activity of the enzyme, is modulated in response to variations in whole-body insulin sensitivity, and is not dependent on sustained changes in the plasma glucose level.

Authors

C Chen, H Hosokawa, L M Bumbalo, J L Leahy

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts