Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Transforming growth factor-beta activation in irradiated murine mammary gland.
M H Barcellos-Hoff, … , M L Tsang, J A Weatherbee
M H Barcellos-Hoff, … , M L Tsang, J A Weatherbee
Published February 1, 1994
Citation Information: J Clin Invest. 1994;93(2):892-899. https://doi.org/10.1172/JCI117045.
View: Text | PDF
Research Article Article has an altmetric score of 6

Transforming growth factor-beta activation in irradiated murine mammary gland.

  • Text
  • PDF
Abstract

The biological activity of TGF-beta, an important modulator of cell proliferation and extracellular matrix formation, is governed by dissociation of mature TGF-beta from an inactive, latent TGF-beta complex in a process that is critical to its role in vivo. So far, it has not been possible to monitor activation in vivo since conventional immunohistochemical detection does not accurately discriminate latent versus active TGF-beta, nor have events associated with activation been defined well enough to serve as in situ markers of this process. We describe here a modified immunodetection method using differential antibody staining that allows the specific detection of active versus latent TGF-beta. Under these conditions, we report that an antibody raised to latency-associated peptide detects latent TGF-beta, and we demonstrate that LC(1-30) antibodies specifically recognize active TGF-beta 1 in tumor xenografts overproducing active TGF-beta 1, without cross-reactivity in tumors expressing similar levels of latent TGF-beta 1. We previously reported that TGF-beta immunoreactivity increases in murine mammary gland after whole-body 60Co-gamma radiation exposure. Using differential antibody staining we now show that radiation exposure specifically generates active TGF-beta 1. While latent TGF-beta 1 was widely distributed in unirradiated tissue, active TGF-beta 1 distribution was restricted. Active TGF-beta 1 increased significantly within 1 h of irradiation concomitant with decreased latent TGF-beta immunoreactivity. This rapid shift in immunoreactivity provides the first evidence for activation of TGF-beta in situ. This reciprocal pattern of expression persisted for 3 d and was accompanied by decreased recovery of latent TGF-beta 1 from irradiated tissue. Radiation-induced activation of TGF-beta may have profound implications for understanding tissue effects caused by radiation therapy.

Authors

M H Barcellos-Hoff, R Derynck, M L Tsang, J A Weatherbee

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required
Rich Text Editor, eletter_body
Editor toolbarsClipboard/Undo CutKeyboard shortcut Ctrl+X CopyKeyboard shortcut Ctrl+C PasteKeyboard shortcut Ctrl+V Paste as plain textKeyboard shortcut Ctrl+Alt+Shift+V Paste from Word UndoKeyboard shortcut Ctrl+Z RedoKeyboard shortcut Ctrl+YEditing Find Replace Select All Spell Check As You TypeLinks LinkKeyboard shortcut Ctrl+K Unlink AnchorForms Form Checkbox Radio Button Text Field Textarea Selection Field Button Image Button Hidden FieldTools Maximize Show BlocksDocument Source Save New Page Preview Print TemplatesBasic Styles BoldKeyboard shortcut Ctrl+B ItalicKeyboard shortcut Ctrl+I UnderlineKeyboard shortcut Ctrl+U Strikethrough Subscript Superscript Copy FormattingKeyboard shortcut Ctrl+Shift+C Remove FormatParagraph Insert/Remove Numbered List Insert/Remove Bulleted List Decrease Indent Increase Indent Block Quote Create Div Container Align Left Center Align Right Justify Text direction from left to right Text direction from right to left Set languageStylesStylesStylesFormatFormatFontFontSizeSizeColors Text Color Background Color
Press ALT 0 for help
◢Elements path 

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 1 policy sources
Referenced in 4 patents
122 readers on Mendeley
See more details