Regional myocardial ischemia is associated with increased levels of adenosine and norepinephrine, factors that may alter activation of the beta-adrenergic receptor (beta AR)-G protein-adenylyl cyclase pathway in the heart. We have used the ameroid constrictor model to determine whether alterations in myocardial signal transduction through the beta AR-G protein-adenylyl cyclase pathway occur in the setting of chronic episodes of reversible ischemia. Pigs were instrumented with ameroid occluders placed around the left circumflex coronary artery. 5 wk later, after ameroid closure, flow and function were normal in the ischemic bed, but flow (P = 0.001) and function (P < 0.03) were abnormal when metabolic demands were increased. The ischemic bed showed a reduction in myocardial beta AR number (P < 0.005). Despite regional downregulation of myocardial beta AR number, adenylyl cyclase activity was similar in the ischemic and control beds. Quantitative immunoblotting showed that the cardiac inhibitory GTP-binding protein, Gi alpha 2, was decreased in the ischemic bed (P = 0.02). In contrast, the cardiac stimulatory GTP-binding protein, Gs alpha, was increased in endocardial sections from the ischemic bed (P = < 0.05). Decreased Gi alpha 2 content was associated with decreased inhibition of adenylyl cyclase. Reduced Gi alpha 2 content, in conjunction with increased Gs alpha content in the endocardium, may provide a means by which adrenergic activation is maintained in the setting of chronic episodic myocardial ischemia.
H K Hammond, D A Roth, M D McKirnan, P Ping
The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.