Recently we demonstrated that the nonadherent (to plastic) fraction of human PBMC could be activated by IL-2 to inhibit Cryptococcus neoformans growth. Here we characterize the antifungal effector cells. Depletion by panning of natural killer (NK) (CD16+, CD56+) cells from nylon wool-treated, IL-2-activated PBMC markedly decreased lytic activity against a tumor cell target (K562) but did not affect antifungal activity. Panning out T (CD3+, CD5+) cells enhanced activity against tumor cells but partially abrogated activity against C. neoformans. IL-2-activated T cells of 95% purity, obtained by panning out NK cells from PBMC forming rosettes with sheep erythrocytes, had excellent antifungal activity but suboptimal antitumor activity. The nonrosetted cells (which were virtually free of T cells and enriched for NK cells) had both antitumor and antifungal activity, even if cultured without IL-2. CD4+, CD8+, and CD56+ cells, purified by positive selection by panning, directly inhibited cryptococcal growth. Conjugate formation between fungi and both CD56+ and CD5+ effector cells was demonstrated by videomicroscopy and immunoperoxidase staining. Thus, IL-2-activated T cells and NK cells form conjugates with and directly inhibit the growth of C. neoformans. To our knowledge, these data are the first demonstration of human T cells directly inhibiting growth of a microbial target.
S M Levitz, M P Dupont
The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.