Interleukin 4 (also known as "B cell stimulatory factor-1"), a cytokine product of T lymphocytes and mast cells, stimulates synthesis of the extracellular matrix proteins, types I and III collagen and fibronectin, by human dermal fibroblasts in vitro. Stimulation of collagen by human recombinant (hr)IL-4 was also demonstrated in several fibroblastic synovial cell lines obtained from patients with rheumatoid arthritis and osteoarthritis. The stimulatory effect of hrIL-4 on fibroblast collagen synthesis was specifically neutralized by rabbit anti-hrIL-4 Ig. IL-4 specifically increased the steady-state levels of types I and III procollagen and fibronectin mRNAs, with no effect on cytoplasmic beta-actin mRNA. Quantitative analysis of the levels of Pro alpha 1(I) collagen transcripts in IL-4-treated fibroblast cultures was also corroborated by antisense RNA-mRNA hybridization and RNAse resistant hybrids which showed that IL-4-treated fibroblasts expressed higher levels of Pro alpha 1(I) collagen transcripts. Nuclear run-off transcription experiments indicated that IL-4 stimulated the rates of mRNA biogenesis. Based on these observations we conclude that IL-4 exerts its effect on collagen and fibronectin synthesis at the pretranslational level, resulting in synthesis of these extracellular matrix proteins. These and other data suggest that IL-4 may be a "fibrogenic cytokine" that could be important in promoting biogenesis of extracellular matrix proteins in normal wound healing and in pathological fibrosis in which mast cells and T lymphocytes play a central role.
A E Postlethwaite, M A Holness, H Katai, R Raghow
The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.