B lymphocytes from patients expressing the X chromosome-linked immune deficiency disorder, Wiskott-Aldrich syndrome (WAS), fail to produce antibodies in response to stimulation with polysaccharides and other type-2 T cell-independent antigens. To investigate whether this abnormality reflects a defect in the signal transduction cascade normally triggered by ligation of surface immunoglobulin (sIg) on B cells, we have examined early signaling events induced by anti-Ig antibody stimulation of EBV B lymphoblastoid cell lines from WAS patients and healthy controls. Despite the expression of comparable levels of sIg and sIgM on WAS and control EBV B cells, WAS cells failed to manifest the increased proliferation in response to anti-Ig treatment observed in the control cell lines. WAS and control EBV B cells also differed in the magnitude of the change in cytosolic free calcium ([Ca2+]i) induced by sIg ligation; WAS cells showed either markedly diminished or no changes in [Ca2+]i levels whereas control EBV B cells consistently showed increases in [Ca2+]i. Anti-Ig-induced changes in inositol phosphate release were also markedly reduced in WAS compared with control cells. As protein tyrosine phosphorylation is thought to represent a proximal event in the activation of B cells, inducing increases in [Ca2+]i by virtue of tyrosine phosphorylation of phospholipase C (PLC)-gamma, profiles of protein tyrosine phosphorylation and expression of tyrosine-phosphorylated PLC-gamma 1 were compared between WAS and normal EBV B cells before and after sIg cross-linking. These studies revealed that in addition to defective mobilization of Ca2+, the WAS cells manifested little or no increase in tyrosine phosphorylation of PLC-gamma 1 or other intracellular proteins after sIg ligation. Together these results indicate the association of WAS with a defect in the coupling of sIg to signal transduction pathways considered prerequisite for B cell activation, likely at the level of tyrosine phosphorylation. The abnormalities observed in these early transmembrane signaling events in WAS EBV B cells may play a role not only in the nonresponsiveness of WAS patient B cells to certain T independent antigens, but also in the genesis of some of the other cellular deficits exhibited by these patients.
H U Simon, G B Mills, S Hashimoto, K A Siminovitch
The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.