The possibility of using an exclusively percutaneous strategy to deliver foreign DNA to normal and balloon-dilated atherosclerotic arteries was studied by analysis of transfection efficiency in a rabbit model. A total of 22 external iliac arteries from 22 rabbits (10 normal and 12 atherosclerotic) were transfected with a solution of luciferase expression vector plasmid and liposome, using a dual balloon-catheter system. Analysis of the transfected segments revealed luciferase activity in 10 of the 22 arteries (4/10 normal vs 6/12 balloon-injured atherosclerotic, P = NS); no activity could be detected in the contralateral limb arterial segments used as controls. Luciferase activity levels in successfully transfected segments measured 4.10 +/- 1.19 (m +/- SEM) Turner light units (TLU), with 3.03 +/- 1.16 TLU found in normals vs 4.81 +/- 1.87 TLU in balloon-injured atherosclerotic arteries (P = NS). In situ hybridization of successfully transfected atherosclerotic sections showed expression of the luciferase gene mRNA from rare cells (less than 1/1,000) limited to the neointimal lesion. Thus, expression of new genetic material may be achieved in both normal and balloon-dilated atherosclerotic arteries following an exclusively percutaneous approach. The low efficiency of the current delivery strategy, however, represents a potential limitation that must be improved if this strategy is to be applied as a therapeutic approach to human vascular disease.
G Leclerc, D Gal, S Takeshita, S Nikol, L Weir, J M Isner
The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.