We describe a new variant of Glanzmann's thrombasthenia (variant Strasbourg I). The patient (M.S.) showed an absence of platelet aggregation to ADP, thrombin, and collagen, and a decreased clot retraction. Platelet fibrinogen was approximately 20% of normal levels. ADP-stimulated platelets bound markedly reduced amounts of soluble fibrinogen and platelet adhesion to surface-bound fibrinogen was defective. Normal to subnormal amounts of glycoprotein (GP) IIb-IIIa (alpha IIb beta 3) complexes, the platelet fibrinogen receptor, were revealed by SDS-PAGE, crossed immunoelectrophoresis, and antibody binding. However, the complexes were unusually sensitive to dissociation with EDTA at room temperature. Furthermore, flow cytometry showed that the platelets failed to bind the activation-dependent monoclonal antibody, PAC-1, after stimulation. In contrast, an RGDS-containing peptide induced significant binding of the anti-ligand-induced binding site antibody, D3GP3, suggesting the presence of a functional RGD binding domain on the patient's GPIIb-IIIa complex. Sequence analysis was performed after polymerase chain reaction amplification of selected patient's GPIIIa exons, and of the patient's platelet GPIIb and GPIIIa mRNAs. A point mutation (C to T) was localized in exon D (iv) of GPIIIa that resulted in an 214Arg to 214Trp amino acid substitution. The defect has been inherited from the parents who are heterozygous for the same mutation. This substitution points to an essential amino acid in a region of GPIIIa involved in the binding of fibrinogen and influencing the Ca(2+)-dependent stability of the GPIIb-IIIa complex.
F Lanza, A Stierlé, D Fournier, M Morales, G André, A T Nurden, J P Cazenave
The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.