Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

17 beta-estradiol inhibits interleukin-6 production by bone marrow-derived stromal cells and osteoblasts in vitro: a potential mechanism for the antiosteoporotic effect of estrogens.
G Girasole, … , D C Williams, S C Manolagas
G Girasole, … , D C Williams, S C Manolagas
Published March 1, 1992
Citation Information: J Clin Invest. 1992;89(3):883-891. https://doi.org/10.1172/JCI115668.
View: Text | PDF
Research Article

17 beta-estradiol inhibits interleukin-6 production by bone marrow-derived stromal cells and osteoblasts in vitro: a potential mechanism for the antiosteoporotic effect of estrogens.

  • Text
  • PDF
Abstract

The effect of 17 beta-estradiol on interleukin-6 (IL-6) synthesis was examined in murine bone marrow-derived stromal cell lines, normal human bone-derived cells, and nontransformed osteoblast cell lines from mice and rats. In all these cell types IL-6 production was stimulated as much as 10,000-fold in response to the combination of recombinant interleukin-1 (IL-1) and tumor necrosis factor alpha (TNF alpha). Addition of 17 beta-estradiol in the cultures exerted a dose-dependent inhibition of IL-1-, TNF-, and IL-1 + TNF-induced production of bioassayable IL-6. Testosterone and progesterone (but not 17 alpha-estradiol) also inhibited IL-6, but their effective concentrations were two orders of magnitude higher than 17 beta-estradiol. 17 beta-estradiol also decreased the levels of the IL-6 mRNA. In addition, estradiol inhibited both TNF-induced IL-6 production and osteoclast development in primary bone cell cultures derived from neonatal murine calvaria. The TNF-stimulated osteoclast development was also suppressed by a neutralizing monoclonal anti-IL-6 antibody. This in vitro evidence suggests, for the first time, a mechanistic paradigm by which estrogens might exert at least part of their antiresorptive influence on the skeleton.

Authors

G Girasole, R L Jilka, G Passeri, S Boswell, G Boder, D C Williams, S C Manolagas

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts