Hepatic cholesterol metabolism was studied in rats fed purified diets supplemented (9% wt/wt) with either fish oil (FO) (n-3 fatty acids) or corn oil (CO) (n-6 fatty acids) for 4 wk. Rats were equipped with permanent catheters in heart, bile duct, and duodenum to allow studies under normal feeding conditions. [3H]-cholesteryl oleate-labeled small unilamellar liposomes, which are rapidly endocytosed by hepatocytes, were intravenously injected to label intrahepatic cholesterol pools, and plasma and bile were collected. FO as compared to CO induced a lowering of plasma cholesterol levels by 38% and of triglyceride levels by 69%. This reduction in plasma lipids in FO rats was accompanied by: (a) an increased bile acid pool size (28%); (b) a fourfold increase in the ratio cholic acid/chenodeoxycholic acid in bile; (c) increased biliary excretion of cholesterol (51%); (d) accelerated excretion of endocytosed free cholesterol into bile; (e) accelerated incorporation of endocytosed cholesterol in bile acids; (f) a significant increase in the bile acid-independent fraction of bile flow; and (g) a threefold increase in hepatic alkaline phosphatase activity. The results show that FO induces changes in transport and metabolic pathways of cholesterol in the rat liver, which result in a more rapid disposition of plasma-derived cholesterol into the bile.
M J Smit, A M Temmerman, H Wolters, F Kuipers, A C Beynen, R J Vonk
The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.