The purpose of this study was to measure magnesium absorption over the wide range of intakes to which the intestine may be exposed from food and/or magnesium-containing medications. Net magnesium absorption was measured in normal subjects after they ingested a standard meal supplemented with 0, 10, 20, 40, and 80 mEq of magnesium acetate. Although absorption increased with each increment in intake, fractional magnesium absorption fell progressively (from 65% at the lowest to 11% at the highest intake) so that absorption as a function of intake was curvilinear. This absorption-intake relationship was almost perfectly represented by an equation containing a hyperbolic function plus a linear function. Our results are statistically compatible with a magnesium absorption process that simultaneously uses a mechanism that reaches an absorptive maximum, plus a mechanism that endlessly absorbs a defined fraction (7%) of ingested magnesium. Compared to previous studies of calcium absorption, much less magnesium that calcium was absorbed at intakes above 8 mEq/meal, apparently due to greater restriction of intestinal permeability to magnesium. We also found that magnesium from a high magnesium-containing food source, almonds, was just as bioavailable as from soluble magnesium acetate. In contrast, magnesium absorption from commercially available enteric-coated magnesium chloride was much less than from magnesium acetate, suggesting that enteric coating can impair magnesium bioavailability.
K D Fine, C A Santa Ana, J L Porter, J S Fordtran
The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.