In cultured intact LLC-PK1 renal epithelial cells, a nonhydrolyzable ATP analogue, ATP gamma S, inhibits AVP-stimulated cAMP formation. In LLC-PK1 membranes, several ATP analogues inhibit basal, GTP-, forskolin-, and AVP-stimulated adenylate cyclase activity in a dose-dependent manner. The rank order potency of inhibition by ATP analogues suggests that a P2y type of ATP receptor is involved in this inhibition. The compound ATP gamma S inhibits agonist-stimulated adenylate cyclase activity in solubilized and in isobutylmethylxanthine (IBMX) and quinacrine pretreated membranes, suggesting that ATP gamma S inhibition occurs independent of AVP and A1 adenosine receptors and of phospholipase A2 activity. The ATP gamma S inhibition of AVP-stimulated adenylate cyclase activity is not affected by pertussis toxin but is attenuated by GDP beta S, suggesting a possible role for a pertussis toxin insensitive G protein in the inhibition. Exposure of intact LLC-PK cells to ATP gamma S results in a significant increase in protein kinase C activity. However, neither of two protein kinase C inhibitors (staurosporine and H-7) prevents ATP gamma S inhibition of AVP-stimulated adenylate cyclase activity, suggesting that this inhibition occurs by a protein kinase C independent mechanism. These findings suggest the presence of functional P2y purinoceptors coupled to two signal transduction pathways in cultured renal epithelial cells. The effect of P2y purinoceptors to inhibit AVP-stimulated adenylate cyclase activity may be mediated, at least in part, by a pertussis toxin insensitive G protein.
R J Anderson, R Breckon, B S Dixon
The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.