Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Evidence for attenuation of myo-inositol uptake, phosphoinositide turnover and inositol phosphate production in aortic vasculature of rats during pregnancy.
K P Conrad, … , P A Friedman, V M Schmidt
K P Conrad, … , P A Friedman, V M Schmidt
Published May 1, 1991
Citation Information: J Clin Invest. 1991;87(5):1700-1709. https://doi.org/10.1172/JCI115187.
View: Text | PDF
Research Article

Evidence for attenuation of myo-inositol uptake, phosphoinositide turnover and inositol phosphate production in aortic vasculature of rats during pregnancy.

  • Text
  • PDF
Abstract

We postulated that vascular phosphoinositide metabolism is attenuated during pregnancy, and thereby could contribute to maternal vasodilation and reduced vascular reactivity. The basal rate of incorporation of [3H]myo-inositol and [3H]glycerol into phosphoinositides of aortae from pregnant rats in vitro was significantly reduced, when compared with vessels from virgin animals. After injection of [3H]myo-inositol intravenously into chronically instrumented conscious pregnant and virgin rats, the incorporation of the label by phosphatidylinositol was 66 +/- 4% less in aortae of gravid versus virgin animals (P less than 0.001), despite comparable plasma concentrations of radioactivity. Fold stimulation of total [3H]inositol phosphates by arginine vasopressin, norepinephrine, and angiotensin II over a 15-min period was not different between aortic segments from virgin and gravid rats, although both absolute basal and stimulated levels were significantly less in vessels from pregnant animals. After 45 s of incubation with 10(-7) M arginine vasopressin, however, the fold-stimulation of [3H]inositol trisplus tetrakisphosphate was reduced in aortae from gravid rats, when compared with vessels from virgin animals (P less than 0.005). By HPLC, greater than 90% of the radioactivity in the [3H]inositol trisplus tetrakisphosphate column fraction after 30 and 60 s of agonist stimulation was [3H]inositol-1,4,5-trisphosphate. We further observed that the rate of uptake of [3H]myo-inositol by aortic vasculature obtained from gravid rats was significantly (24%) less than uptake by vessels from virgin animals. Plasma myo-inositol concentrations were not significantly different, but presumably as a consequence of reduced uptake, aortic segments freshly isolated from pregnant rats contained 22 +/- 6% less myo-inositol than vessels from virgin controls as measured by gas chromatography-mass spectrometry (P less than 0.03). We conclude that myo-inositol uptake and content, phosphoinositide turnover, and inositol phosphate production are reduced in aortic vasculature of gravid rats.

Authors

K P Conrad, S A Barrera, P A Friedman, V M Schmidt

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required
Rich Text Editor, eletter_body
Editor toolbarsClipboard/Undo CutKeyboard shortcut Ctrl+X CopyKeyboard shortcut Ctrl+C PasteKeyboard shortcut Ctrl+V Paste as plain textKeyboard shortcut Ctrl+Alt+Shift+V Paste from Word UndoKeyboard shortcut Ctrl+Z RedoKeyboard shortcut Ctrl+YEditing Find Replace Select All Spell Check As You TypeLinks LinkKeyboard shortcut Ctrl+K Unlink AnchorForms Form Checkbox Radio Button Text Field Textarea Selection Field Button Image Button Hidden FieldTools Maximize Show BlocksDocument Source Save New Page Preview Print TemplatesBasic Styles BoldKeyboard shortcut Ctrl+B ItalicKeyboard shortcut Ctrl+I UnderlineKeyboard shortcut Ctrl+U Strikethrough Subscript Superscript Copy FormattingKeyboard shortcut Ctrl+Shift+C Remove FormatParagraph Insert/Remove Numbered List Insert/Remove Bulleted List Decrease Indent Increase Indent Block Quote Create Div Container Align Left Center Align Right Justify Text direction from left to right Text direction from right to left Set languageStylesStylesStylesFormatFormatFontFontSizeSizeColors Text Color Background Color
Press ALT 0 for help
◢Elements path 

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts