Erythroid burst-promoting activity (BPA) is released from B lymphocytes in soluble (sBPA) and membrane-bound (mBPA) forms. To study intracellular processes involved in production of these physically separable factors, we measured their time course release into serum-free medium from B cells that were pulse-exposed for 5-240 min to nonmitogenic base medium or inhibitors of energy-dependent metabolism (2,4-dinitrophenol, sodium azide, and 2-deoxy-D-glucose), transcription and translation (actinomycin D and cycloheximide), replicative DNA synthesis (cytosine arabinoside), or posttranslational processing (monensin). mBPA and sBPA were initially detectable after 1 and 2 h, respectively. Maximum cumulative levels of 8 +/- 0.6 and 9 +/- 1.0 U/ml, respectively, were reached after 8 h. In contrast, cumulative mBPA and sBPA levels in medium prepared from cells treated with metabolic inhibitors were reduced by up to 90%. Both surface exfoliation and mBPA expression by intact plasma membranes were diminished. Whereas pulse-exposure to cytosine arabinoside had no effect, treatment with actinomycin D or cycloheximide abolished BPA expression. Exposure to monensin reduced mBPA and sBPA levels to zero in a concentration-and time-dependent fashion. We conclude that production and release of BPA is an energy-dependent process, requiring mRNA synthesis and translation and posttranslational remodeling of the protein but not replicative DNA synthesis.
N Dainiak, S Sorba
The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.