Hyp mice exhibit increased renal catabolism of vitamin D metabolites by the C-24 oxidation pathway (1988. J. Clin. Invest. 81:461-465). To examine the regulatory influence of dietary phosphate on the renal vitamin D catabolic pathway in Hyp mice, we measured C-24 oxidation of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) in renal mitochondria isolated from Hyp mice and normal littermates fed diets containing 0.03% (low-Pi), 1% (control-Pi), and 1.6% (high-Pi) phosphate. In normal mice the low-Pi diet led to a rise in serum 1,25(OH)2D (22.2 +/- 1.8 to 48.1 +/- 6.8 pg/ml, P less than 0.05) and no change in C-24 oxidation products (0.053 +/- 0.006 to 0.066 +/- 0.008 pmol/mg protein per min) when compared with the control diet. In Hyp mice the low-Pi diet elicited a fall in serum 1,25(OH)2D (21.9 +/- 1.2 to 8.0 +/- 0.2 pg/ml, P less than 0.05) and a dramatic increase in C-24 oxidation products (0.120 +/- 0.017 to 0.526 +/- 0.053 pmol/mg protein per min, P less than 0.05) when compared with the control diet. The high-Pi diet did not significantly alter serum levels of 1,25(OH)2D or C-24 oxidation products in normal mice. Hyp mice on the high-Pi diet experienced a rise in serum 1,25(OH)2D (21.9 +/- 1.2 to 40.4 +/- 7.3, P less than 0.05) and a fall in C-24 oxidation products (0.120 +/- 0.017 to 0.043 +/- 0.007 pmol/mg protein per min, P less than 0.05). The present results demonstrate that the defect in C-24 oxidation of 1,25(OH)2D3 in Hyp mice is exacerbated by phosphate depletion and corrected by phosphate supplementation. The data suggest that the disorder in vitamin D metabolism in the mutant strain is secondary to the perturbation in phosphate homeostasis.
H S Tenenhouse, G Jones
The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.