The inner medullary collecting duct (IMCD) has been proposed to be a site of atrial natriuretic factor (ANF) action. We carried out experiments in isolated perfused terminal IMCDs to determine whether ANF (rat ANF 1-28) affects either osmotic water permeability (Pf) or urea permeability. In the presence of a submaximally stimulating concentration of vasopressin (10(-11) M), ANF (100 nM) significantly reduced Pf by an average of 46%. Lower concentrations of ANF also significantly inhibited vasopressin-stimulated Pf by the following percentages: 0.01 nM ANF, 18%; 0.1 nM, 46%; 1 nM, 48%. Addition of exogenous cyclic GMP (0.1 mM) mimicked the effect of ANF, decreasing Pf by an average of 48%. ANF also inhibited cyclic AMP-stimulated Pf by an average of 31%. ANF did not affect urea permeability, nor did it alter vasopressin-stimulated cyclic AMP accumulation. We conclude that ANF at physiological concentrations causes a large inhibition of vasopressin-stimulated Pf in the rat terminal IMCD, and that cyclic GMP is the second messenger mediating the effect. ANF appears to act at a site distal to cyclic AMP generation in the chain of events linking vasopressin receptor binding to an increase in osmotic water permeability.
H Nonoguchi, J M Sands, M A Knepper
The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.