Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Site and mechanism of action of trichlormethiazide in rabbit distal nephron segments perfused in vitro.
T Shimizu, … , M Nakamura, M Imai
T Shimizu, … , M Nakamura, M Imai
Published August 1, 1988
Citation Information: J Clin Invest. 1988;82(2):721-730. https://doi.org/10.1172/JCI113653.
View: Text | PDF
Research Article

Site and mechanism of action of trichlormethiazide in rabbit distal nephron segments perfused in vitro.

  • Text
  • PDF
Abstract

To determine the exact site and mechanism of action of thiazide diuretics, effects of 10(-4) M trichlormethiazide (TCM) on NaCl transport were examined in the distal convoluted tubule (DCT), the connecting tubule (CNT) and the cortical collecting duct (CCD) of rabbit kidney by the in vitro microperfusion technique. TCM added to the lumen decreased lumen-to-bath 36Cl flux (JCl(LB)) only in the CNT without changing the transmural voltage (VT). In the DCT, 10(-4) M furosemide did not change JCl(LB) even if it was added to the lumen with 10(-4) M TCM, whereas 10(-5) M amiloride in the lumen decreased the lumen-to-bath 22Na flux (JNa(LB)) and VT. In the CNT, TCM added to the lumen did not affect the bath-to-lumen 36Cl flux. Addition of TCM to the bath slightly decreased JCl(LB). Luminal addition of 10(-4) M TCM also decreased JNa(LB). Amiloride at 10(-5) M in the lumen decreased both JNa(LB) and VT. Addition of TCM with 10(-5) M amiloride further decreased JNa(LB) without affecting VT, indicating that TCM affects the electroneutral Na+ transport, which is distinct from the amiloride-sensitive conductive Na+ pathway. When Na+ was removed from the lumen, JCl(LB) was markedly decreased, but addition of TCM did not cause further decrease in JCl(LB). Furosemide did not affect JCl(LB), but addition of both 10(-4) M TCM and furosemide decreased JCl(LB), indicating that Na+-K+-2Cl- cotransport is not involved in the action of TCM. Removal of HCO3- slightly decreased JCl(LB), and TCM caused further decrease in JCl(LB). Amiloride at 10(-3) M, a concentration supposed to inhibit the Na+/H+ antiport, slightly decreased JCl(LB), and addition of TCM caused a further marked decrease in JJl(LB). The similar results were also obtained when the combined effects of 10(-3) M 4,4'-diisothiocyano-stilben-2,2'-disulfonate(DIDS) and 10(-4) M TCM were examined. These findings suggest that the parallel antiport of Na+/H+ and Cl-/HCO3- is not involved in the action of TCM. By excluding other possible mechanisms involving neutral Na+-dependent Cl- transport, we conclude that TCM inhibits Na+-Cl- cotransport in the luminal membrane of the rabbit CNT.

Authors

T Shimizu, K Yoshitomi, M Nakamura, M Imai

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required
Rich Text Editor, eletter_body
Editor toolbarsClipboard/Undo CutKeyboard shortcut Ctrl+X CopyKeyboard shortcut Ctrl+C PasteKeyboard shortcut Ctrl+V Paste as plain textKeyboard shortcut Ctrl+Alt+Shift+V Paste from Word UndoKeyboard shortcut Ctrl+Z RedoKeyboard shortcut Ctrl+YEditing Find Replace Select All Spell Check As You TypeLinks LinkKeyboard shortcut Ctrl+K Unlink AnchorForms Form Checkbox Radio Button Text Field Textarea Selection Field Button Image Button Hidden FieldTools Maximize Show BlocksDocument Source Save New Page Preview Print TemplatesBasic Styles BoldKeyboard shortcut Ctrl+B ItalicKeyboard shortcut Ctrl+I UnderlineKeyboard shortcut Ctrl+U Strikethrough Subscript Superscript Copy FormattingKeyboard shortcut Ctrl+Shift+C Remove FormatParagraph Insert/Remove Numbered List Insert/Remove Bulleted List Decrease Indent Increase Indent Block Quote Create Div Container Align Left Center Align Right Justify Text direction from left to right Text direction from right to left Set languageStylesStylesStylesFormatFormatFontFontSizeSizeColors Text Color Background Color
Press ALT 0 for help
◢Elements path 

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts