Erythropoietin and granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulate the differentiation and proliferation of erythroid cells. To determine the cellular mechanism of action of these growth factors, we measured changes in intracellular free calcium concentration [( Cac]) in single human erythroid precursors in response to recombinant erythropoietin and GM-CSF. [Cac] in immature erythroblasts derived from cultured human cord blood erythroid progenitors was measured with fluorescence microscopy digital video imaging. When stimulated with erythropoietin, [Cac] in the majority of erythroblasts increased within 3 min, peaked at 5 min, and returned toward baseline at 10 min. The percentage of cells that responded to erythropoietin stimulation increased in a dose-dependent manner. Additional stimulation with GM-CSF in cells previously exposed to erythropoietin resulted in a second [Cac] increase. Immature erythroblasts treated with GM-CSF followed by erythropoietin responded similarly to each factor with a rise in [Cac]. The source of transient calcium is intracellular since erythroblasts were incubated in medium devoid of extracellular calcium. Our observations suggest that changes in [Cac] may be an intracellular signal that mediates the proliferative/differentiating effect of hematopoietic growth factors.
B A Miller, R C Scaduto Jr, D L Tillotson, J J Botti, J Y Cheung
The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.