Cyclic AMP stimulates HCO3 secretion and Cl self-exchange in rabbit cortical collecting tubule. We found that varying peritubular [Cl] changed the Cl self-exchange rate with saturation kinetics (Km, 3-4 mM). HCO3 secretion also showed saturation kinetics as a function of mean luminal [Cl] (Km, 4-11 mM). Both Cl self-exchange and Cl-HCO3 exchange thus appear to be carrier-mediated. Addition/removal of basolateral HCO3 qualitatively changed Cl and HCO3 transport as expected for Cl-HCO3 exchange, but quantitatively changed Cl absorption more than HCO3 secretion. The diffusive Cl permeability and the transepithelial conductance in the presence of HCO3/CO2 and cAMP were higher than in their absence suggesting that HCO3/CO2 and cAMP together increase a conductive Cl pathway parallel to a 1:1 Cl-HCO3 exchanger. Thus, cAMP not only stimulates the overall process of anion exchange (probably by increasing an electroneutral exchanger and/or a series Cl conductance), but also stimulates a Cl conductance parallel to the exchange process.
V L Schuster
The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.