The treatment of verapamil toxicity was examined in lightly sedated dogs. Verapamil, administered as a bolus (0.72 mg/kg) followed by a continuous infusion (0.11 mg/kg per min), decreased cardiac output (CO) from 3.1 +/- 0.1 to 1.7 +/- 0.1 liter/min (P less than 0.001), heart rate (HR) from 85 +/- 4 to 57 +/- 3 beats/min (P less than 0.001), left ventricular derivative of pressure with respect to time (LV dP/dt) from 2,085 +/- 828 to 783 +/- 78 mm Hg/s (P less than 0.001), mean aortic pressure (AO) from 77 +/- 4 to 38 +/- 2 mm Hg (P less than 0.001) and stroke volume from 39 +/- 3 to 28 +/- 2 ml/beat (P less than 0.01). In verapamil-toxic animals isoproterenol increased HR, CO, LV dP/dt, and AO; calcium chloride increased LV dP/dt and AO; norepinephrine, epinephrine, and dopamine increased CO, AO, and LV dP/dt, atropine increased HR, CO, and AO. Phenylephrine (13-55 micrograms/kg per min) produced no changes except a small increase in AO while very high dose phenylephrine (300 micrograms/kg per min) increased AO, CO, and LV dP/dt. 4-Aminopyridine (4-AP) increased HR, CO, LV dP/dt, and AO. When administered prior to verapamil, 4-AP prevented the development of verapamil toxicity as shown by the significantly higher AO (P less than 0.001), CO (P less than 0.01), and LV dP/dt (P less than 0.01) when 4-AP followed by verapamil was compared to verapamil alone. In conclusion, there does not appear to be a single specific therapy for verapamil toxicity, however it can be partially corrected by presently available pharmacologic therapy and 4-AP.
R Gay, S Algeo, R Lee, M Olajos, E Morkin, S Goldman
The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.