Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Blood pressure development of the spontaneously hypertensive rat after concurrent manipulations of dietary Ca2+ and Na+. Relation to intestinal Ca2+ fluxes.
D A McCarron, … , B LaCour, T Drüeke
D A McCarron, … , B LaCour, T Drüeke
Published September 1, 1985
Citation Information: J Clin Invest. 1985;76(3):1147-1154. https://doi.org/10.1172/JCI112070.
View: Text | PDF
Research Article

Blood pressure development of the spontaneously hypertensive rat after concurrent manipulations of dietary Ca2+ and Na+. Relation to intestinal Ca2+ fluxes.

  • Text
  • PDF
Abstract

The blood pressure of the spontaneously hypertensive rat (SHR) is influenced by the Ca2+ content of its diet. As the SHR's greater dependence on dietary calcium may reflect a defect in intestinal calcium absorption, we measured in vitro unidirectional Ca2+ flux (J) in the duodenum-jejunum (four segments each) of the SHR (n = 6) and the normotensive Wistar-Kyoto rat (WKY; n = 6) by a modified Ussing apparatus. Because of the known and postulated interactions between Ca2+ and Na+ in both intestinal and vascular tissue, we assessed in vivo the influence of a concurrent manipulation of Na+ intake (three levels: 0.25%, 0.45%, and 1.0%) on the blood pressure development of SHRs (n = 35) and WKYs (n = 35), between 6 and 20 wk of age, exposed to three levels of dietary calcium (0.1, 1.0, and 2%). Net calcium flux (Jnet) (mean +/- SEM) was significantly (P less than 0.01) lower in the SHR (-2.8 +/- 6.3 nmol/cm2 X h) than in the WKY (34.6 +/- 8.8 nmol/cm2 X h). The SHR's decreased Jnet resulted from a significantly (P less than 0.03) lower mucosa-to-serosa flux (Jm-s) in the SHR (41.0 +/- 5.6 nmol/cm2 X h) compared with the Jm-s of the WKY (70.1 +/- 9.1 nmol/cm2 X h). Serosa-to-mucosa flux for calcium did not differ between the SHR (43.8 +/- 6.6 nmol/cm2 X h) and the WKY (35.5 +/- 8.0 nmol/cm2 X h). The SHR's decreased (P less than 0.002) Jm-s was confirmed by additional measurements in SHRs and WKYs. Jm-s was 36.2 +/- 3.7 nmol/cm2 X h in the SHRs (n = 11) and 64.4 +/- 6.7 nmol/cm2 X h in the WKYs (n = 9). The provision of an increased dietary Ca2+ (2% by weight) and increased Na+ (1%) to the SHR prevented the emergence of hypertension (P less than 0.001) (mean +/- SEM systolic blood pressure at 20 wk of age; 135 +/- 5 mmHg for the 2% Ca2+, 1% Na+ SHR vs. 164 +/- 2 mmHg for the control diet SHR). Ca2+ (0.1%) and Na+ (0.25%) restriction accelerated the SHR's hypertension (192 +/- 2 mmHg) (P less than 0.001) and was associated with higher pressures in the WKY (146 +/- 4 mmHg in the restricted WKY vs. 134 +/- 4 mmHg in the control WKY). In a parallel group of 24 SHRs and 24 WKYs fed one of three diets (2% Ca2+/1% Na+; 1% Ca2+/0.45% Na+; or 0.1% Ca2+/0.25% Na+), the heart (P < 0.05) and kidney (P = 0.08) weight of the SHRs varied depending on the diet at 20 wk of age. Low Ca2+ and Na+ intake was associated with increased heart weight (1.6+/-0.9 g) compared with the normal diet for SHR (1.51+/-0.07 g). Increased Ca2+ and Na+ intake was associated with a significantly (P = 0.05) lower heart weight in the SHR (1.37+/-0.03 g) and in the WKY (1.35+/-0.06 g) compared with their normal diet controls. These findings show one mechanism for the SHR's depressor response to supplemental dietary Ca2+ and, in part, explain the sodium dependence of calcium's cardiovascular protective effect.

Authors

D A McCarron, P A Lucas, R J Shneidman, B LaCour, T Drüeke

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts